On geodesics of Finsler metrics via navigation problem

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Geodesics of Finsler Metrics via Navigation Problem

This paper is devoted to a study of geodesics of Finsler metrics via Zermelo navigation. We give a geometric description of the geodesics of the Finsler metric produced from any Finsler metric and any homothetic field in terms of navigation representation, generalizing a result previously only known in the case of Randers metrics with constant S-curvature. As its application, we present explici...

متن کامل

Homogeneous geodesics of left invariant Finsler metrics

In this paper, we study the set of homogeneous geodesics of a leftinvariant Finsler metric on Lie groups. We first give a simple criterion that characterizes geodesic vectors. As an application, we study some geometric properties of bi-invariant Finsler metrics on Lie groups. In particular a necessary and sufficient condition that left-invariant Randers metrics are of Berwald type is given. Fin...

متن کامل

Holomorphic Curvature of Finsler Metrics and Complex Geodesics

If D is a bounded convex domain in C , then the work of Lempert [L] and Royden-Wong [RW] (see also [A]) show that given any point p ∈ D and any non-zero tangent vector v ∈ C at p, there exists a holomorphic map φ:U → D from the unit disk U ⊂ C into D passing through p and tangent to v in p which is an isometry with respect to the hyperbolic distance of U and the Kobayashi distance of D. Further...

متن کامل

On C3-Like Finsler Metrics

In this paper, we study the class of of C3-like Finsler metrics which contains the class of semi-C-reducible Finsler metric. We find a condition on C3-like metrics under which the notions of Landsberg curvature and mean Landsberg curvature are equivalent.

متن کامل

Geodesics on Non–complete Finsler Manifolds

In this note based on paper [3] we deal with domains D (i.e. connected open subsets) of a Finsler manifold (M, F ). At first we carry out a comparison between different notions of convexity for their boundaries. Then a careful application of variational methods to the geodesic problem yields that the convexity of ∂D is equivalent to the existence of a minimal geodesic for each pair of points of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2011

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-2011-10726-3